Skip to main content

C# - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. C# has rich set of built-in operators and provides the following type of operators:
  • Arithmetic Operators
  • Relational Operators
  • Logical Operators
  • Bitwise Operators
  • Assignment Operators
  • Misc Operators
This tutorial explains the arithmetic, relational, logical, bitwise, assignment, and other operators one by one. More Info: C Sharp (programming language)

Arithmetic Operators

Following table shows all the arithmetic operators supported by C#. Assume variable A holds 10 and variable B holds 20 then:
Show Examples
OperatorDescriptionExample
+Adds two operandsA + B = 30
-Subtracts second operand from the firstA - B = -10
*Multiplies both operandsA * B = 200
/Divides numerator by de-numeratorB / A = 2
%Modulus Operator and remainder of after an integer divisionB % A = 0
++Increment operator increases integer value by oneA++ = 11
--Decrement operator decreases integer value by oneA-- = 9

Relational Operators

Following table shows all the relational operators supported by C#. Assume variable A holds 10 and variable B holds 20, then:
Show Examples
OperatorDescriptionExample
==Checks if the values of two operands are equal or not, if yes then condition becomes true.(A == B) is not true.
!=Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.(A != B) is true.
>Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.(A > B) is not true.
<Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.(A < B) is true.
>=Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.(A >= B) is not true.
<=Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.(A <= B) is true.

Logical Operators

Following table shows all the logical operators supported by C#. Assume variable A holds Boolean value true and variable B holds Boolean value false, then:
Show Examples
OperatorDescriptionExample
&&Called Logical AND operator. If both the operands are non zero then condition becomes true.(A && B) is false.
||Called Logical OR Operator. If any of the two operands is non zero then condition becomes true.(A || B) is true.
!Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false.!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ^ are as follows:
pqp & qp | qp ^ q
00000
01011
11110
10011
Assume if A = 60; and B = 13; then in the binary format they are as follows:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A  = 1100 0011
The Bitwise operators supported by C# are listed in the following table. Assume variable A holds 60 and variable B holds 13, then:
Show Examples
OperatorDescriptionExample
&Binary AND Operator copies a bit to the result if it exists in both operands.(A & B) = 12, which is 0000 1100
|Binary OR Operator copies a bit if it exists in either operand.(A | B) = 61, which is 0011 1101
^Binary XOR Operator copies the bit if it is set in one operand but not both.(A ^ B) = 49, which is 0011 0001
~Binary Ones Complement Operator is unary and has the effect of 'flipping' bits.(~A ) = 61, which is 1100 0011 in 2's complement due to a signed binary number.
<<Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.A << 2 = 240, which is 1111 0000
>>Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.A >> 2 = 15, which is 0000 1111

Assignment Operators

There are following assignment operators supported by C#:
Show Examples
OperatorDescriptionExample
=Simple assignment operator, Assigns values from right side operands to left side operandC = A + B assigns value of A + B into C
+=Add AND assignment operator, It adds right operand to the left operand and assign the result to left operandC += A is equivalent to C = C + A
-=Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operandC -= A is equivalent to C = C - A
*=Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operandC *= A is equivalent to C = C * A
/=Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operandC /= A is equivalent to C = C / A
%=Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operandC %= A is equivalent to C = C % A
<<=Left shift AND assignment operatorC <<= 2 is same as C = C << 2
>>=Right shift AND assignment operatorC >>= 2 is same as C = C >> 2
&=Bitwise AND assignment operatorC &= 2 is same as C = C & 2
^=bitwise exclusive OR and assignment operatorC ^= 2 is same as C = C ^ 2
|=bitwise inclusive OR and assignment operatorC |= 2 is same as C = C | 2

Miscellaneous Operators

There are few other important operators including sizeof, typeof and ? :supported by C#.
Show Examples
OperatorDescriptionExample
sizeof()Returns the size of a data type.sizeof(int), returns 4.
typeof()Returns the type of a class.typeof(StreamReader);
&Returns the address of an variable.&a; returns actual address of the variable.
*Pointer to a variable.*a; creates pointer named 'a' to a variable.
? :Conditional ExpressionIf Condition is true ? Then value X : Otherwise value Y
isDetermines whether an object is of a certain type.If( Ford is Car) // checks if Ford is an object of the Car class.
asCast without raising an exception if the cast fails.Object obj = new StringReader("Hello");
StringReader r = obj as StringReader;

Operator Precedence in C#

Operator precedence determines the grouping of terms in an expression. This affects evaluation of an expression. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator.
For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than +, so the first evaluation takes place for 3*2 and then 7 is added into it.
Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedence operators are evaluated first.
Show Examples
CategoryOperatorAssociativity
Postfix() [] -> . ++ - -Left to right
Unary+ - ! ~ ++ - - (type)* & sizeofRight to left
Multiplicative* / %Left to right
Additive+ -Left to right
Shift<< >>Left to right
Relational< <= > >=Left to right
Equality== !=Left to right
Bitwise AND&Left to right
Bitwise XOR^Left to right
Bitwise OR|Left to right
Logical AND&&Left to right
Logical OR||Left to right
Conditional?:Right to left
Assignment= += -= *= /= %=>>= <<= &= ^= |=Right to left
Comma,Left to right

Comments

Popular posts from this blog

C# Nullables

C# provides a special data types, the  nullable  types, to which you can assign normal range of values as well as null values.  C# Methods For example, you can store any value from -2,147,483,648 to 2,147,483,647 or null in a Nullable<Int32> variable. Similarly, you can assign true, false, or null in a Nullable<bool> variable. Syntax for declaring a  nullable  type is as follows: < data_type> ? <variable_name> = null; The following example demonstrates use of nullable data types: using System ; namespace CalculatorApplication { class NullablesAtShow { static void Main ( string [] args ) { int ? num1 = null ; int ? num2 = 45 ; double ? num3 = new double ?(); double ? num4 = 3.14157 ; bool ? boolval = new bool ?(); // display the values Console . WriteLine ( "Nullables at Show: {0}, {1}, {2}, {3}" , ...

C# - Constants and Literals

The constants refer to fixed values that the program may not alter during its execution. These fixed values are also called literals. Constants can be of any of the basic data types like an integer constant, a floating constant, a character constant, or a string literal. There are also enumeration constants as well. The constants are treated just like regular variables except that their values cannot be modified after their definition.  More Info:  C Sharp (programming language) Integer Literals An integer literal can be a decimal, or hexadecimal constant. A prefix specifies the base or radix: 0x or 0X for hexadecimal, and there is no prefix id for decimal. An integer literal can also have a suffix that is a combination of U and L, for unsigned and long, respectively. The suffix can be uppercase or lowercase and can be in any order. Here are some examples of integer literals: 212 /* Legal */ 215u /* Legal */ 0xFeeL /* Legal */ Following a...

C# Methods

A strategy is a gathering of articulations that together play out an errand. Each C# program has no less than one class with a strategy named Main.  To utilize a strategy, you have to:  Characterize the strategy  Call the strategy Methods Defining Methods in C# When you characterize a strategy, you essentially proclaim the components of its structure. The linguistic structure for characterizing a strategy in C# is as per the following: <Access Specifier > <Return Type > <Method Name > (Parameter List) { Method Body } Following are the different components of a technique:  Access Specifier : This decides the perceivability of a variable or a technique from another class.  Return type : A technique may restore an esteem. The arrival sort is the information kind of the esteem the technique returns. On the off chance that the strategy is not restoring any esteems, at that point the arrival sort is void.  ...