Skip to main content

C# - Constants and Literals

The constants refer to fixed values that the program may not alter during its execution. These fixed values are also called literals. Constants can be of any of the basic data types like an integer constant, a floating constant, a character constant, or a string literal. There are also enumeration constants as well.
The constants are treated just like regular variables except that their values cannot be modified after their definition. More Info: C Sharp (programming language)

Integer Literals

An integer literal can be a decimal, or hexadecimal constant. A prefix specifies the base or radix: 0x or 0X for hexadecimal, and there is no prefix id for decimal.
An integer literal can also have a suffix that is a combination of U and L, for unsigned and long, respectively. The suffix can be uppercase or lowercase and can be in any order.
Here are some examples of integer literals:
212         /* Legal */
215u        /* Legal */
0xFeeL      /* Legal */
Following are other examples of various types of Integer literals:
85         /* decimal */
0x4b       /* hexadecimal */
30         /* int */
30u        /* unsigned int */
30l        /* long */
30ul       /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent part. You can represent floating point literals either in decimal form or exponential form.
Here are some examples of floating-point literals:
3.14159       /* Legal */
314159E-5F    /* Legal */
510E          /* Illegal: incomplete exponent */
210f          /* Illegal: no decimal or exponent */
.e55          /* Illegal: missing integer or fraction */
While representing in decimal form, you must include the decimal point, the exponent, or both; and while representing using exponential form you must include the integer part, the fractional part, or both. The signed exponent is introduced by e or E.

Character Constants

Character literals are enclosed in single quotes. For example, 'x' and can be stored in a simple variable of char type. A character literal can be a plain character (such as 'x'), an escape sequence (such as '\t'), or a universal character (such as '\u02C0').
There are certain characters in C# when they are preceded by a backslash. They have special meaning and they are used to represent like newline (\n) or tab (\t). Here, is a list of some of such escape sequence codes:
Escape sequenceMeaning
\\\ character
\'' character
\"" character
\?? character
\aAlert or bell
\bBackspace
\fForm feed
\nNewline
\rCarriage return
\tHorizontal tab
\vVertical tab
\xhh . . .Hexadecimal number of one or more digits
Following is the example to show few escape sequence characters:
using System;
namespace EscapeChar 
{
   class Program
   {
      static void Main(string[] args)
      {
         Console.WriteLine("Hello\tWorld\n\n");
         Console.ReadLine();
      }
   }
}
When the above code is compiled and executed, it produces the following result:
Hello   World

String Literals

String literals or constants are enclosed in double quotes "" or with @"". A string contains characters that are similar to character literals: plain characters, escape sequences, and universal characters.
You can break a long line into multiple lines using string literals and separating the parts using whitespaces.
Here are some examples of string literals. All the three forms are identical strings.
"hello, dear"
"hello, \
dear"
"hello, " "d" "ear"
@"hello dear"

Defining Constants

Constants are defined using the const keyword. Syntax for defining a constant is:
const <data_type> <constant_name> = value;
The following program demonstrates defining and using a constant in your program:
using System;
namespace DeclaringConstants
{
    class Program
    {
        static void Main(string[] args)
        {
            const double pi = 3.14159;   
            
            // constant declaration 
            double r;
            Console.WriteLine("Enter Radius: ");
            r = Convert.ToDouble(Console.ReadLine());
            double areaCircle = pi * r * r;
            Console.WriteLine("Radius: {0}, Area: {1}", r, areaCircle);
            Console.ReadLine();
        }
    }
}
When the above code is compiled and executed, it produces the following result:
Enter Radius: 
3
Radius: 3, Area: 28.27431

Comments

Popular posts from this blog

C# - Environment

In this chapter, we will discuss the tools required for creating C# programming. We have already mentioned that C# is part of .Net framework and is used for writing .Net applications. Therefore, before discussing the available tools for running a C# program, let us understand how C# relates to the .Net framework. The .Net Framework The .Net framework is a revolutionary platform that helps you to write the following types of applications: Windows applications Web applications Web services The .Net framework applications are multi-platform applications. The framework has been designed in such a way that it can be used from any of the following languages: C#, C++, Visual Basic, Jscript, COBOL, etc. All these languages can access the framework as well as communicate with each other. The .Net framework consists of an enormous library of codes used by the client languages such as C#. Following are some of the components of the .Net framework:  More Info:  C Sharp (programming l

C# Methods

A strategy is a gathering of articulations that together play out an errand. Each C# program has no less than one class with a strategy named Main.  To utilize a strategy, you have to:  Characterize the strategy  Call the strategy Methods Defining Methods in C# When you characterize a strategy, you essentially proclaim the components of its structure. The linguistic structure for characterizing a strategy in C# is as per the following: <Access Specifier > <Return Type > <Method Name > (Parameter List) { Method Body } Following are the different components of a technique:  Access Specifier : This decides the perceivability of a variable or a technique from another class.  Return type : A technique may restore an esteem. The arrival sort is the information kind of the esteem the technique returns. On the off chance that the strategy is not restoring any esteems, at that point the arrival sort is void.  Method name : Method name

C# - Program Structure

Before we study basic building blocks of the C# programming language, let us look at a bare minimum C# program structure so that we can take it as a reference in upcoming chapters. Creating Hello World Program A C# program consists of the following parts: Namespace declaration A class Class methods Class attributes A Main method Statements and Expressions Comments Let us look at a simple code that prints the words "Hello World": using System ; namespace HelloWorldApplication { class HelloWorld { static void Main ( string [] args ) { /* my first program in C# */ Console . WriteLine ( "Hello World" ); Console . ReadKey (); } } } When this code is compiled and executed, it produces the following result: Hello World Let us look at the various parts of the given program: The first line of the program  using System;  - the  using  keyword is used to include the  System  namesp