Skip to main content

C# - Data Types

The variables in C#, are categorized into the following types:
  • Value types
  • Reference types
  • Pointer types

Value Type

Value type variables can be assigned a value directly. They are derived from the class System.ValueTypeMore Info: C Sharp (programming language)
The value types directly contain data. Some examples are int, char, and float, which stores numbers, alphabets, and floating point numbers, respectively. When you declare an int type, the system allocates memory to store the value.
The following table lists the available value types in C# 2010:
TypeRepresentsRangeDefault Value
boolBoolean valueTrue or FalseFalse
byte8-bit unsigned integer0 to 2550
char16-bit Unicode characterU +0000 to U +ffff'\0'
decimal128-bit precise decimal values with 28-29 significant digits(-7.9 x 1028 to 7.9 x 1028) / 100 to 280.0M
double64-bit double-precision floating point type(+/-)5.0 x 10-324 to (+/-)1.7 x 103080.0D
float32-bit single-precision floating point type-3.4 x 1038 to + 3.4 x 10380.0F
int32-bit signed integer type-2,147,483,648 to 2,147,483,6470
long64-bit signed integer type-9,223,372,036,854,775,808 to 9,223,372,036,854,775,8070L
sbyte8-bit signed integer type-128 to 1270
short16-bit signed integer type-32,768 to 32,7670
uint32-bit unsigned integer type0 to 4,294,967,2950
ulong64-bit unsigned integer type0 to 18,446,744,073,709,551,6150
ushort16-bit unsigned integer type0 to 65,5350
To get the exact size of a type or a variable on a particular platform, you can use the sizeof method. The expression sizeof(type) yields the storage size of the object or type in bytes. Following is an example to get the size of int type on any machine:
using System;
namespace DataTypeApplication
{
   class Program 
   {
      static void Main(string[] args)
      {
         Console.WriteLine("Size of int: {0}", sizeof(int));
         Console.ReadLine();
      }
   }
}
When the above code is compiled and executed, it produces the following result:
Size of int: 4

Reference Type

The reference types do not contain the actual data stored in a variable, but they contain a reference to the variables.
In other words, they refer to a memory location. Using multiple variables, the reference types can refer to a memory location. If the data in the memory location is changed by one of the variables, the other variable automatically reflects this change in value. Example of built-in reference types are: objectdynamic, and string.

Object Type

The Object Type is the ultimate base class for all data types in C# Common Type System (CTS). Object is an alias for System.Object class. The object types can be assigned values of any other types, value types, reference types, predefined or user-defined types. However, before assigning values, it needs type conversion.
When a value type is converted to object type, it is called boxing and on the other hand, when an object type is converted to a value type, it is called unboxing.
object obj;
obj = 100; // this is boxing

Dynamic Type

You can store any type of value in the dynamic data type variable. Type checking for these types of variables takes place at run-time.
Syntax for declaring a dynamic type is:
dynamic <variable_name> = value;
For example,
dynamic d = 20;
Dynamic types are similar to object types except that type checking for object type variables takes place at compile time, whereas that for the dynamic type variables takes place at run time.

String Type

The String Type allows you to assign any string values to a variable. The string type is an alias for the System.String class. It is derived from object type. The value for a string type can be assigned using string literals in two forms: quoted and @quoted.
For example,
String str = "Tutorials Point";
A @quoted string literal looks as follows:
@"Tutorials Point";
The user-defined reference types are: class, interface, or delegate. We will discuss these types in later chapter.

Pointer Type

Pointer type variables store the memory address of another type. Pointers in C# have the same capabilities as the pointers in C or C++.
Syntax for declaring a pointer type is:
type* identifier;
For example,
char* cptr;
int* iptr;
We will discuss pointer types in the chapter 'Unsafe Codes'.

Comments

Popular posts from this blog

C# - Variables

A variable is nothing but a name given to a storage area that our programs can manipulate. Each variable in C# has a specific type, which determines the size and layout of the variable's memory the range of values that can be stored within that memory and the set of operations that can be applied to the variable. The basic value types provided in C# can be categorized as: Type Example Integral types sbyte, byte, short, ushort, int, uint, long, ulong, and char Floating point types float and double Decimal types decimal Boolean types true or false values, as assigned Nullable types Nullable data types C# also allows defining other value types of variable such as  enum  and reference types of variables such as  class , which we will cover in subsequent chapters. Defining Variables Syntax for variable definition in C# is: <data_type> <variable_list> ; Here, data_type must be a valid C# data type including char, int, float, double, or any user-defined da

C# - Environment

In this chapter, we will discuss the tools required for creating C# programming. We have already mentioned that C# is part of .Net framework and is used for writing .Net applications. Therefore, before discussing the available tools for running a C# program, let us understand how C# relates to the .Net framework. The .Net Framework The .Net framework is a revolutionary platform that helps you to write the following types of applications: Windows applications Web applications Web services The .Net framework applications are multi-platform applications. The framework has been designed in such a way that it can be used from any of the following languages: C#, C++, Visual Basic, Jscript, COBOL, etc. All these languages can access the framework as well as communicate with each other. The .Net framework consists of an enormous library of codes used by the client languages such as C#. Following are some of the components of the .Net framework:  More Info:  C Sharp (programming l

C# - Overview

C# is a modern, general-purpose, object-oriented programming language developed by Microsoft and approved by European Computer Manufacturers Association (ECMA) and International Standards Organization (ISO). C# was developed by Anders Hejlsberg and his team during the development of .Net Framework.  More Info:  C Sharp (programming language) C# is designed for Common Language Infrastructure (CLI), which consists of the executable code and runtime environment that allows use of various high-level languages on different computer platforms and architectures. More  -  L298 The following reasons make C# a widely used professional language: It is a modern, general-purpose programming language It is object oriented. It is component oriented. It is easy to learn. It is a structured language. It produces efficient programs. It can be compiled on a variety of computer platforms. It is a part of .Net Framework. Strong Programming Features of C# Although C# constructs closely